
Carnegie-Mellon University
PITTSBURGH, PENNSYLVANIA 15213

GRADUATE SCHOOL OF INDUSTRIAL ADMINISTRATION
WILUAM LARIMER MELLON, FOUNDER

oprodPtdod by

NATIONAl. TECHNICAL
INFORMATION SERVICE

Sp•1nfil.d, Va 22151

DISULAIMBI NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT. NUMBER OF

DO NOT

REPRODUCE LEGIBLY.

S...

,wcuatyCLISt~lC40ocu1 DOUENT CNTROL DATA -R D
,, : , . gft i n•t~ tl.tlv, Bjl, �-1 a irs o. d i dj ': ,wtinoo. n nnn.i Wn erlrered wl:en tie overall reprt is r1.h.ls l)

:- • ' .. ',. , ,',.; C Tr S~s. ,t'r•)oace~q~th r) 2p, R ~r'OF•T SE:CON17 V CLASS!A-ICA rfr't,t

Graduate School of Industrial Administration Unclassified
Carnegie-Mellon University Not applicable

"I P R Hf!TL

Generating All the Faces of a Polyhedron

Z, s c, ' i iv 40rrs5 (Tipe ot report arid inclusiv~e dates)

Management Sciences Research Report June 1971
A ',, I -,CR,s, (First rnamct, middle initial, last name)

Claude-Alain Burdet

REOR ?iT a. TOTAL NO. OF PAGES .O R S

June 1971 20 i
A.. C:1-41C' ON G4.r T NO go. ORIGINATO'RS REPORT NUM PERIS?

N00014-67-A-0314-O007 Management Sciences Research Report No. 271

NR -47-048
9h,. OTHER REPORT NO(S) (A!#y other noinlbora that may be as.ni•ned

'his report)

W.P. 90-70-1

This document has been approved for public release and sale; its distribution
is unl imited.

S1, : A7y NO-S -,2 PONSORING MILTAR- AC TIVITY

Logistics and Mathematical Statistics Br.

Office of Naval Research
Washington, D. C. 20360

The determination of all the extreme points of a given convex polyhedron P C Rn

generally requires a substantial amount of computations; this note presents a
conceptually simple algorithm for this purpose. Unlike other methods, the procedure

generates only those basic solutions which are extreme points (i.e., only feasible

basic solutions).

More generally, this approach is able to generate all the faces of any dimension

k (0 _ k < n), that is all those k-dimensional subpolyhedra which lie on the

boundary of the given polyhedron P.

(PArA 1DD 'ins Unclassi fed

Unclassified
Security CIA-tsiarition

:4
IIn m

S 4. C R S L 'N! A Li t | LIN, C
[_____��__ _O V, T

extreme point programming

non-convex programming

concave programming

integer programming

polyhedral sets

vertex enumeration

facial decomposition

degeneracy

r~I

W.P. 90-70-1

Management S:iences Research Report No. 271

GENERATING ALL THE FACES OF A POLYHEDRON'

by

Claude-Alain Burdet

"June 1971 -

This report was prepared as part of the activities nf the Management Sciences
Research Group, Carnegie-Mellon University, under Contract NOOO]4-67-A-0314-0007
NR 047-048 with the U. S. Office of Naval Research. Reproduction in whole
or in part is permitLted for any purpose of the V'. S. Government.

Management Sciences Research Group

Graduate School of Industrial Administration
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

i • !I IIBH I ~m , i III i . .. l - • a , -, ..--..

ABSTRACT

The determination of all the extreme points of a given convex

polyhedron P Z Rn generally requires a substantial amount of

computations; this note presents a conceptually simple algorithm

for this purpose. Unlike other methods, the procedure generates

only those basic solutions which are extreme points (i.e., only

feasible basic solutions).

More generally, this approach is able to generate all the

faces of any dimension k (0 < k < n) , that is all those

k-dimensional subpolyhedra which lie on the boundary of the given

polyhedron P

Introduction

Polyhedral sets are the most widely used constrained sets in mathe-

matical programming and they are usually defined by a system of linear

(in)equalities. In fact, other characterizations of these sets are often

impractical in the convex programming context.

However, as mathematical programming penetrates into the darker and

less structured areas of non-convex programs (concave programming or dis-

crete (in particular, integer or zero-one) programming, for instance), more

information on the polyhedral set P of feasible solutions is required.

A classical question is that of finding the vertices of P , and seems

very difficult to answer practically in large dimensional vector spaces.

One may also be interested in the complete face structure of P , that is,

in finding a characterization of each k-dimensional face F of P , for

0 < k < a . (Clearly the quest for vertices is a special case of the latter,

since they are 0-dimensional faces of P.)

This paper presents a simple approach to the determination of the face

structure of a polyhedron. An algorithm is presented, which generates all

the desired information concerning the complete lattice of faces of a poly-

hedron ' , in the form of a non-redundant facial arborescence.

Somi applications are mentioned and described in general terms in the

last section. One particular case is that of general quadratic programming,

which is the object of the follow-up paper [4].

Section 1. Minimal Sets.

1.1 Consider the polyhedral set P , defined by the following system of

inequalities

x. = a. + Z a . > 0 , i C M (1)1 3-0 jeN i3 -

with non-basic index set N Nl,2,...,nl C M =

- The matrix A contains an n-by-n identity submatrix, which

corresponds to the constraints x> 0, j e NM

- For simplicity, we only consider here the ease where P

has full dimension n and is bounded.

Definition: A subset I10 M is called minimal if

x >0, Vi x i xx 0, Vi e = P

and for every i 0 I , there exists a point x such that

1.o
,. < 0 .afd x._ > 0 , Vi c I - fio 1 2)

0

Property1: The constraints x. > 0 , Vi c (M - I) are. redundant
I-

and one has

J = xIx. L 0 , Vi e I) 3)

2.

Property 2: For every i e I , the hyperplane x. 0 contains a0 1.
0

(n-l)-dimensional facet of P

Proofs:

to 1: By definition one has

V q e (M-1) x q> 0 , V x C [x x. > 0 , V i e I 3 q.e.d.

to 2: The set D = •x x. > 0 , V i c I - i o contains a point

* with x. < 0 , because i e I • Furthermore there exists
1 0

0

a point K in the interior of D with R. 0 ; such a point
0

may be constructed by choosing an arbitrary interior point

Se Int(P) and intersecting the line • - x with the plane

x = 0 , yielding 3i . Since PC D one has K e Int(D)

due to the convexity of D , i.e. x = (l-ýL) + p x , with

0 < p. < 1. Moreover, since PC DC Rn, the polyhedral set

D has the same dimension n as the set P .

Take now a (small enough) open n-dimensional ball B0:)7 Int(D)

containing i , and consider the intersection

B' = fx e B(I) x. = 0 by construction B' is a
0

(n-l)-dimensional open ball C: D , and it lies in the inter-

section of P with the hyperplane xi = 0 , i.e. in a facet of
0

P , which has dimension (n-l) . q.e.d.

3.

1.2 The concept of minimal set of inequalities I provides for the

basic tool of an algorithm for the face decomposition of P ; I

can be obtained by the following:

PROCEDURE MLN SET

Give a system of inequalities (1), i.e., a matrix A with (n+m) rows

and (n+l) columns, containing an identity submatrix; the procedure MINSET

determines the minimal set I c M. A primal feasible linear programming

tableau for the system (1) is required to start MINSET. During the exe-

cution of MINSET, the elements i e M are selected ore after the other,0

and the corresponding row

x. = a. + 2 a. x
1 0 LoO jeN 'oJ

is (momentarily) chosen as objective function. Optimization of the following L.P.

Minimize x., subject to x, > 0 , Vi e R - Ji 0 furnishes a minimal

value x. ; the index set R is determined by the procedure and satisfies
0

I ci R c M. If x < < 0 then one has i a I , by definition of the minimal1. 0
0

qet I ; if x > 0, then the constraint x > 0 is considered redundant
0 0

and is disposed of; the cast x. = 0 is treated separately.
I
0

MINSET: I Set R = M and I I =100

2 Choose a basic index r e R - (R (I N) ;

- if R = 0 then STOP!

- if R # 0 but R C N , then change the basis (and

the non-basic set N) by choosing a positive pivot

which preserves primal feasibility; if there exists

no such element in the current tableau then replace I

by I U R and SLOP!

3 Set R = R - (r] and consider the rth row

x r a + 7' a x
r ro l rj

4.

4 Solve by L.P. optimizaticn the problem

Minimize x , s.t. x > 0 , V i c (R U I) (4)
r

5 If the minimal value of x is > 0 then go to 2.
r

If the minimal value of x = 0, then replace I by I ' Ji }
r 0 0 0

and go to 2.

6 Replace the I by I U [r] and go to 2.

Because the procedure MINSET will be frequently called in the algorithm

it is well worth noting the following remarks to speed up its execution:

1) In order to minimize the number of pivotal operations, the choice

of r in Step 2 should correspond to a row xr with the smallest

possible number of negative elements a rj (usually with just

one a . < 0)

2) 5uppose that, in the course of the (primal) optimization of

Step 4, a rot; x , s r R.with a > 0, Vj is found in the current

aasic sec; then s may be inmiediately discarded from the set R.

Proof: In the current basis, the condition a . > 0 is the optimality

criterion of the L.P.

Minimize x subject to x. > 0, Vi e. ((R U I) - is)).

Thus, one may bypass the minimization of x and go to the stepss

5 and 6, with x = a

3) Similarly for the column of a non-basic variable x with j £ R,

one may tliminate the element j from the set R. Define

mL , , = basic index (also k = r)
k/akj > 0 akj

kj

i i m =m m mmm mm mmmm~m mm mm~mm~mm,,m. •...

5.

Then j may be eliminated when A > 0.

(A particular such case is unen akj _< 0, Vk).

Proof: The preceeding condition is such that the solution remains feasible

when z assumes a negative value 0 > x > -'%.

Let us now show that the procedure MINSET does indeed determine a

minimal set Imin:

(i) By construction, every point x c P' - [x I xi> 0, i C I in)

satisfies x.i > 0, Vi c (M-l mn);

hence, Pl- P = [x I -Ž 0, Vi C M)

(ii) For every i c Imin the procedure MINSET constructs a

point x with xi < 0 and . -> 0 , VL e (R u I) where R and I

0
are the current sets of step 4; since (R;A) : min by

construction, one has >1 • 0, Vi C In- io

(iii) The set I (it 0) indi:ates that the given system (I) is

degenerate, i.e., that some k-dimensional faces (0 < k < n)

of the polyhedron P are contained in more than (n-k)

hyperplanes x. = 0, i e M; this situation does not affect

the minimal property of Imin, but the identification of the

element3 of I is important in order to elimindte redun-0

dancy of the facial Oecomposition. (See section 3.5).

(iv) Property 3: In the non-degenerate case (I0 the mini-

mal set is unique.

Proof: For every i e (M-l) one has x > £ > 0, Vx C P sLice I 0

by hypothesis; this is a well defined criterion which divides

M uniquely in two disjoint subsets (M-I) and I.

Section 2: The Faces of P

At the beginning, one applies MINSET to the system (1), that is, to

the given polyhedron P in order to determine the set I (degeneracy will

be considered separately in 3.5). But from the theory of polyhedral

sets, one knows that every face F of the polyhedron P is a polyhedron.

Thus, MINSET can be applied to the faces F of P as well. In particular,

to the faces F(i), F(il,i 2),... where

F(i) = 6 P I xil = 0 , i C I , with a corresponding. minimal set TO.,) C I

F(i,i 2) x e P I X. X. e 1, i 2 c l(i,) C I " I(i 1 ,i 2) C l(iI)

etc....

A sequence of faces F(i 1), F(ili 2),...,F(il,...,i) is generated

with the following properties.

Property 3: For k + s < n , one has

I(il iTi2,...,s) 2"" lii,.,sp S+l,...,n-k)

;A!!d F(il~i 2,...,s) F(ilpi 29..i s~,.,n-k).

Proof: by construction.

In conclusion, one sees that repeated use of the procedure MINSET,

leads to the construction of an aborescence with initial node P (n-dimen-

sional face) itself; at the level below, one finds all the (Li-l)-dimen-

sional faces of P (one for each i s i); then, below, the faces of these

faces (i.e., the (n-2)-ditnenslonal faces of P) etc.,... At every node

(i.e., face F(il,...,i)) the minimal set I(I ,.,.,i) determines the

7.

branches (how many and which) loading to the level below. At the lowest

level, one ultimately finds the vertices of P.

The next section presents an algorithmic conetructiona of this arbor-

escence.

8.

Section 3: An exhaustive arborescence for the faces of P

3.1 The following procedures TREE, FACE2D, SIMFACE and BACKTRACK generate

one by one a list of n-arrays called VERTEX = fil,i 2 ,... ,i}

In this version, the algorithm requires the storage of

- the arrays COL [t; , t = 1,2,...,n which have at most

m components.

- the n-arrays N , M and MI , J

- the "dynamic" arrays (at most m components each):

I = 1[0;], 1[1; j,....,I[n-1;] .

- the current linear prcgranmming tableaux A , which is at

most (11+m) by (n0+).

TREE: I - Set t = I and J 0 ; the initial tableau stems

from (1); 1[0; 1 1 ; MI(O] = number of elements in I
O II

M[0] = 1

- Set COL [1): = first column of the original matrix A

(corresponding to the first non-basic variable x)J

- Set N[I] : = j = Ton-basic index of the first column

- Delete the first :olumn from the matrix A , to

obtain thp ament uiatrix A (which is thus an Mi[01

by n array)

2 if (n-t) = 2 Lhop use FACE2D and go to BACKTRACK.

3 Apply MINSET to the current tableau A : -# lit; I

- Set Milt] = number of elements in the set lIt;]

- Set M[t] =0

4 If Ml[t] = I , apply SIMFACE and go to BACKTRACK.

5 If Mit] =M1[tl , go to BACKTRACK

9.

6 - Set M[t]" M[t] + 1
th

7 Take the M[t] component j of the array

lit;] i ., j: - l[t;M[t]];

8 Make x. non-basic (if it is not already)
J

preserving primal feasibility.

When pivoting is required, one must transorm also the

colu-ms stored in the arrays COL[s] , for all s,

I < K t ; this can be done by forming a full tab-

leau TAB = (COL[I1, COL[2],...,COL[t],A1 ; TAB

is then transformed by pivoting (pivot in A) and the

new columns 1,... are stored again in COL[Il],...,COL t]

- Set t: = t + I;

- Set N[t]: = j

9 - Set COL[t]: = coiumn of the current tableau A correspond-

ing to the non-basic index j

- Set A = matrix obtained from the current matrix A by

deleting the column j

10 Go to step 2.

BACKTRACK:

11 Set t t - 1

12 If t = -1 then STOP!

13 Adjoin the column COL[t] to the current matrix A

thus forming a new (augmented) matrix A

10.

3.2 We need the following special procedures in the above algorithm.

Two-dimensional faces: FACE2D.

Two-dimensional faces of the convex polyhedron P can be treated

separately, because a straightforward sequence of pivots determines

all their vertices and consequently also their 1-dimensional faces.

FACE2D:

1 Find a basic feasible solution, i.e., two non-basic indices

nn2;

- Set R = I[n-2;I and J =0

2 Register the corresponding vertex characterized by the non-

basic index set VERTES = [N[l], N[21,...,N[n-2],n,,n 2].

3 Choose a non-basic index j = n1 or n2 ;

- if both nI and nr2 belong to J then STOP!

4 Set 3: = J u (j) and R = R - (j)

5 Find the basic index i e R which is to leave the basis

when the non-basic index j enters the basis (in order

to maintain primal feasibility).

6 Pivot (on a.. and go to 2.)

3.3 Simplical faces: SIMF C E

When the minimal set I of a k-dimensional face F consists of

(k+l) elements, F is a simplex and its (k+l) vertices can be

immediately determined, without resorting to subfaces of F

Let I = I(ilsi 2 ,.., 1 n-k) =JlJ2,...-Jk+l1

II.

SINFACE: 1 Find a first basic feasible solution, i.e.

k non-basic indices nl,...,nk e I and

store VERTEX = (N[l],N[2],...,N[n-k],nl,...,n ki

2 For each i = l,...,k , gencrate a new non-basic

array VERTEX from the one obtained in step 1

above by replacing the index ni by the last

remaining element nk+1 e I . Clearly n new

arrays VERTEX are generated in this fashion.

The procedure SIMFACE only determines the vertices of F, but if all

substances of F are desired, they can be obtained in a similar manner.

3.4 The algorithm TREE, BACKTRACK, FACM2D, and SIFACE determines a

non-redundant list of non-basic indes sets VERTEX which contains

all the vertices of P.

Proof: The procedure TREE generates all sets of indices

N = (N[l],N[2],...,N[t]] such that N[i] e l[i;]

for all 1 < i < t and for all t, 0 < t < n-2

for all t > 0 ; for t - n-2 the procedure FACE2D

takes over and finds all vertices in that face ;

occasionally for 0 < t < n-2 , the procedure SIMFACE

will do the same. Hence all basic feasible solutions

of P with non-basic variables in the minimal set

I (of P) are generated because by construction,

12.

I 1[I[0;] • I[l; 1 ... D I[t;] always holds true.

Furthermore FACE2D and SIMFACE determine only basic

feasible solutions.

Moreover this list is non-redundant, because step 6

of TREE guarantees that the same index set N is

generated once and only once. q.e.d.

3.5 Degeneracy: When some faces (or vertices) of P are degenerate,

it may happen that geometrically identical faces of P

are algebraically represented by different sets N :

such faces will then appear more than once in the arbor-

escence (but each time with a different index set N ,

i.e., for instance

(x Ix e F 13 = {x I x 9 2

with F = F(il=i2..,q)

F 2 = F(JlJ 2 ,...,jq)

and (illi2,...,iq]'' * lJ2, jq]

This redundan-y is due to degeneracy in the arbor-

escence, i.e., to the fact that some faces F(i 1 ,...,iq)

are "over-determined" in the sense that Ri i (iI,...,i q

such that F(il,...,i) C (x I Xi = 03.

Such an index i is identified by the procedure

MINSET and one has

i q l~l..i) but i C lo(ilp i q)

13.

Hence all the characterizations by different index sets

(ill....iq of the same face F can easily be obtained

from the index set DF i. -,'=,i V I (o(i_) V I (i ,i2)u

•...Uo(il,...i q); One has by definition

DF = (i I xi = 0, Yx c F)C M

and Aff(F) - =x xi 0, Vi e D F The corresponding

linear system

x a. + Z a x = 0 i e DFc M
o jeN

has rank q (K n); it is over-determined in the sense that

contains dF > q linearly dependent equations (dF = number

of elements in D F) whenever one of the sets I / 0.

Every set of q linearly independent rows represents

a characterization of F which appears in the arborescence

and causes redundancy; however, because the main subroutine

TREE generates faces In a lexicographically increasing

order, redundancy can easily be eliminated by the following

additional bookkeeping:

DI - Generate the first (lexicographically) degenerate

representation, i.e., the next redundant node to be

encountered by the procedure TREE;

D2 - Store the lexicographic order rank r of that node;

D3 - When BACKTRACK attains the order r (terminate that

redundant branch and) go to Dl in order to update r;

14.

Note that the degeneracy sets DF are generated in increasing

lexicographic order; and the step Dl does not require any

additional computations; moreover step 3 does eliminate redun-

dancy because the degeneracy sets newly discovered by the

procedure TREE all belong to higher orders than the current

one (i.e., one never finds out in a later phase that some

previously enumerated faces were redundant).

3-5.

Section 4: Some applications of a Facial Optimization Method (FOM) for

linearly constrained mathematical programming.

The Facial Optimization Method (FOM) is of the branch and bound type,

where the branching procedure is generated according to the facial structure

of the constraint polyhedron P ; in this manner primal feasibility is

always present in all the nodes. It should be noted that the arborescence

of section 2 still contains some useful flexibility in the choice of the

order in which the variables are to be "blocked" at value 0 (as non-

basics); thus the usual preference rules of branch and bound algorithms also

apply here. Since in every way the facial arborescence resembles other

branching trees, the usual bound estimators also apply; clearly the effici-

ency of the facial approach as compared to other branch and bound algorithms

depends on P and its structure.

In a vertex to vertex optimization method, where additional properties

must be checked as in 4.1, one must be able to identLfy all

neighbouring vertices of a given vertex x, i.e. find all extreme rays

of a (degenerate) cone. Consider a basis at x

x. =xi + Z a1i x > , 0 Vi 6 M (4)

with non-basic set N C" M. For the rays stemming from x , only the

planes that are tight at x are of interest, i.e.

M' = .i i eN, or ;i=]CM

The problem of finding the extreme rays of the cone C

C -- x I x. > 0 , Vi e M') is equivalent to that of finding all extreme1 -

16.

points of the (n-l)-dimensional polyhedron P - (x C C J 5 x= I; the

corresponding system (1) can be obtained in one pivot from (4). In [3]

a search method of this type is developed for concave programs.

4.1 Zero-one programming: Here the polyhedron P is a subset of the unit

cube; hence every feasible integer solution is a vertex of P

Starting at the L.P. optimal solution x , a branching process which

determines (not necessarily explicitly) all neighbours of x , then all

neighbours of these neighbours, etc will terminate when an integer

vertex has been found and all neighbours generated so far furnish a

lesser value of the objective fune-tion. Depending on the structure of

P , this branch and bound algorithm can use efficiently the facial

structure of P , particularly for polyhedra P where x always has

an integer neighbour.

4.2 General quadratic prograsmming: Suppose we want to optimize (mximize

or minimize) a quadratic objective function (not necessarily convex or

concave) on a polyhedral set P . It can be shown that the candidates

for the optimum are either vertices of P or (more generally) optimal

solutions of the convex quadratic problems

minimize f(x) , s.t. x C F

where F is a k-dimensional face of P such that the function f

remains convex on F .

The facial decomposition method leads in this case to an efficient

algorithm for general quadratic, linearly constrained problems which

is presented in [4]. ,,

Of course FOM can be applied, conceivably, to many other special

optimization problems over polyhedral sets (such as concave programming,

11.

general non-linear programming, etc) but it is not clear at this

point where and when it furnishes an efficient approach in such

general context.

5. Conclusions

The algorithm for generating all vertices of a polyhedron P

presented in this note develops a facial arborescence which may be con-

sidered minimal, since every node is generated exactly once, and corre-

sponds to a feasible face on the boundary of P . In particular, one

can generate in this arborescence the set of vertices of P (i.e.

feasible basic solutions) without generating any other basic solution,

as is the case for methods [1] and (2]. One may argue that the

addItional pivoting, necessary for the construction of the minimal

sets outweights this theoretical property; in view of the exponential

growth of the face structure, however, this should not be expected

to hold true in the general case. A program requiring a modest

amount of storage (i.e., where practically only space for A is

needed) is being implemented. When degeneracy occurs, a subtree

of the facial arborescence can be eliminated by additional bookkeeping.

The remaining arborescence is in one to one correspondence with the

k-dimensional faces (n > k > 0) of P for all k. Precise comparisons

in this context are not easily formulated mathematically and experi-

mentation is currently under way with randomly generated, non-

structured matrices A of a size up to 20 by 10.

,/

REFERENCES

[I] Balinski, M.L., "An Algorithm for Finding All Vertices of a
Convex Polyhedral Set", J. Soc. Indust. Appl. Mathematics,
Volume 9, No. 1 (1961).

[2) Motzkin, T.S., Raiffa, H., Thompson, G.L., and Thrall, R.M.,
"The Double Description Method", Contributions to the
Theory of Games (Vol. 2), H.W. Kuhn and A.W. Tucker (eds.),
Annals of Mathematical Studies, No. 28, Princeton Press (1953).

[31 Burdet, C.-A., "A Combinational Approach to Linearly Constrained
Concave Programming", Carnegie-Mellon University, Graduate
School of Industrial Administration, W.P. 75-70-1.

(41 Burdet, C.-A., "General Quadratic Programming", Carnegie-Mellon
University, Graduate School of Industrial Administration,
W.P. 41-71-2.

